Chaos and randomness: An equivalence proof of a generalized version of the Shannon entropy and the Kolmogorov–Sinai entropy for Hamiltonian dynamical systems
نویسنده
چکیده
Chaos is often explained in terms of random behaviour; and having positive Kolmogorov–Sinai entropy (KSE) is taken to be indicative of randomness. Although seemly plausible, the association of positive KSE with random behaviour needs justification since the definition of the KSE does not make reference to any notion that is connected to randomness. A common way of justifying this use of the KSE is to draw parallels between the KSE and Shannon s information theoretic entropy. However, as it stands this no more than a heuristic point, because no rigorous connection between the KSE and Shannon s entropy has been established yet. This paper fills this gap by proving that the KSE of a Hamiltonian dynamical system is equivalent to a generalized version of Shannon s information theoretic entropy under certain plausible assumptions. 2005 Elsevier Ltd. All rights reserved.
منابع مشابه
In What Sense is the Kolmogorov-Sinai Entropy a Measure for Chaotic Behaviour?—Bridging the Gap Between Dynamical Systems Theory and Communication Theory
On an influential account, chaos is explained in terms of random behaviour; and random behaviour in turn is explained in terms of having positive Kolmogorov-Sinai entropy (KSE). Though intuitively plausible, the association of the KSE with random behaviour needs justification since the definition of the KSE does not make reference to any notion that is connected to randomness. I provide this ju...
متن کاملObservational Modeling of the Kolmogorov-Sinai Entropy
In this paper, Kolmogorov-Sinai entropy is studied using mathematical modeling of an observer $ Theta $. The relative entropy of a sub-$ sigma_Theta $-algebra having finite atoms is defined and then the ergodic properties of relative semi-dynamical systems are investigated. Also, a relative version of Kolmogorov-Sinai theorem is given. Finally, it is proved that the relative entropy of a...
متن کاملIn What Sense is the Kolmogorov - Sinai Entropy a Measure for Chaotic Behaviour ? - Bridging the Gap
On an influential account, chaos is explained in terms of random behaviour; and random behaviour in turn is explained in terms of having positive Kolmogorov-Sinai entropy (KSE). Though intuitively plausible, the association of the KSE with random behaviour needs justification since the definition of the KSE does not make reference to any notion that is connected to randomness. I provide this ju...
متن کاملEntropy of infinite systems and transformations
The Kolmogorov-Sinai entropy is a far reaching dynamical generalization of Shannon entropy of information systems. This entropy works perfectly for probability measure preserving (p.m.p.) transformations. However, it is not useful when there is no finite invariant measure. There are certain successful extensions of the notion of entropy to infinite measure spaces, or transformations with ...
متن کاملThe concept of logic entropy on D-posets
In this paper, a new invariant called {it logic entropy} for dynamical systems on a D-poset is introduced. Also, the {it conditional logical entropy} is defined and then some of its properties are studied. The invariance of the {it logic entropy} of a system under isomorphism is proved. At the end, the notion of an $ m $-generator of a dynamical system is introduced and a version of the Kolm...
متن کامل